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Abstract

In this report, we describe the technical details of our
submission to the EPIC-Kitchens Action Recognition Chal-
lenge 2021, by Team “CMU-KLAB” (username: xhking).
Egocentric videos are captured by a wearable camera in
first-person perspective, which are different from classical
videos in that they usually involve rapid scene change, ob-
ject distortion and limited visual range. Therefore, it re-
quires a much more efficient and stronger architecture to
recognize objects appeared in different frames as well as to
understand hidden relationships among human-object in-
teractions. Attention-type methods have demonstrated their
capabilities in learning such relationships, which, never-
theless, suffer from high computation cost, stopping them
from being applied to large inputs (e.g. videos). We pro-
pose EgoAugment, which combines an efficient transformer
with classic video architecture, aiming to augment the infor-
mation captured by our network and boost performance in
egocentric video analysis. Our method demonstrates better
performance than the most popular architectures in video
action recognition.

1. Introduction

Egocentric video analysis is gaining its popularity with
the development of different human-computer interaction
applications such as Virtual Reality/Augmented Reality
(VR/AR), but it is also challenging due to (1) rapid move-
ment: because a wearable device is usually worn on the
head of a camera wearer, where a small turn could result
in large movement for both background and foreground ob-
jects, leading to frequent occlusion and motion blur effect;
(2) distortion by the wide-angle lens design; (3) limited vi-
sual range: the perspectives of egocentric videos are always
restricted to the working area around hands, which makes
it hard to utilize the surrounding environment for thorough
analysis.

Many state-of-the-art methods targeted for egocentric

videos such as [18, 14, 13] are trying to integrate attention
mechanism [16] thanks to its promising ability to capture
the relationship across frames under challenging settings.
Motivated by a novel design of transformer introduced
in [10], we propose a new architecture named EgoAugment,
by adding a computation-efficient Augment Branch to en-
hance the learning ability under egocentric setting.

2. Methodology
In this section, we introduce our proposed framework by

parts. Figure 1 summarizes the overall pipeline of our pro-
posed method.

2.1. Main Branch (Path 1 + Path 2)

Two-pathway design is a common schema used for video
models, and previous work [2, 7, 15] presents its advan-
tage in extracting spatial and temporal features from videos
simultaneously. For the Main Branch, two sets of video
frames of different number are sampled randomly from the
entire video sequence as inputs. We adopt four residual
stages (i.e. Res-Stage) following the settings in [7] with
3D convolution and bottleneck residual blocks. After each
Res-Stage, we apply lateral connections between these two
paths to enable information fusion. Specifically, outputs
from Path 1 will be fused to Path 2 by time-strided con-
volution [7] and concatenation.

2.2. Augment Branch (Path 3)

Despite that many two-pathway models have achieved
state-of-the-art performance on major video recognition
benchmarks such as AVA, Charades and Kinetics, they
might fail to exhibit satisfying results on egocentric videos
even after fine tuning. Transformers have been justified to
be a powerful module in both image tasks [6, 11, 1, 9] and
EPIC-55 challenge [4], but the biggest obstacle of apply-
ing classical transformers into video tasks is their quadratic
scaling computational complexity of all-to-all attention.

Inspired by the latest work in bottleneck transformer
[10], we aim to design an efficient transformer mod-

1



C’ x T1’ x H’ x W ’

C’ x T2’ x H’ x W ’

Input Video Sequence

Random 
Subsampling

Res-Stage 2

Res-Stage 2Path 1

Path 2

Path 3

Fuse

Flatten & 
Positional Encoding

Data Array

Res-Stage 3

Res-Stage 3

Res-Stage 4

Res-Stage 4

C x T1 x H x W

C x T2 x H x W Fuse Fuse

Av
er

ag
e 

Po
ol

in
g

al
on

g 
T, 

W
, H

; C
on

ca
te

K

V

Cross 
Attention

Latent
Transform

er

M x F

Latent Array Q
N x D

N x D

Shared Weights

Li-1

Li
N x D

Av
er

ag
e 

Po
ol

in
g

al
on

g 
N

FC

FC

FC

FC

∑

∑

noun

verbSo
ft

m
ax

Res-Stage 1

Res-Stage 1

Figure 1: Overview of EgoAugment: given an input video sequence, we will randomly sample T1 and T2 frames as the input
to the Path 1 and Path 2 respectively, where T1 = 2T2. Main Branch (Path 1 + Path 2) takes in two sets of video frames
and calculates the logits for noun and verb via a data layer, 4 residual stages, average pooling and FC layer. The Augment
Branch (Path 3) adopts an iterative design, and derives the logits using a pre-processed input taken from Res-Stage 1 by
cross-attention and self-attention. Logits from both branches are summed and passed through softmax layer to make the final
prediction. Best viewed in color.

ule which can augment the features extracted from Main
Branch, while keeping the process as computational-
efficient as possible even when the input is a large data ar-
ray (i.e. a 3D feature map from Main Branch). Figure 1
shows the detail of our Augment Branch, and we elucidate
the components in the following paragraphs.

Iterative Design We adopt a shared-weight design for
the Augment Branch, where the cross-attention and latent
transformer blocks are iteratively used.

Data Array Denote the size of Data Array as M × F .
Data Array comes from the fused feature maps after Res-
Stage 1 in our Main Branch, and arrays are the same for all
iterations. However, before it is fed into the cross-attention
module, we need three pre-processing steps:

(1) Positional Encoding. Following the positional en-
coding method introduced in [10], we parametrize the
frequency encoding and take values within range of
[sin (fkπxd) , cos (fkπxd)], where fk is the frequencies of
the kth band of a bank of frequencies, and xd is the value
of input position along dth dimension (for video we have
d = 3). We also concatenate the original positional value
xd to the encoding, so we have d(2K + 1)-dim positional
encoding vector for each pixel and we denote the result ar-
ray as D1 with shape of (T ×W ×H)× d(2K + 1)

(2) Flatten. The T ×H×W ×C1 feature map from Res-

Stage 1 will be flatten along spatial and temporal dimension
into (T ×W ×H)× C1, we denote the result array as D2

with shape of (T ×W ×H)× C1

(3) Concatenation. We concatenateD1 andD2 along the
feature dimension to generate theM×F Data Array, where
M = T ×W ×H and F = d(2K + 1) + C1.

Latent Array Denote the size of Latent Array asN×D.
As shown in Figure 1, the core idea is to introduce N low-
dimensional latent units to play the role of query. Since
N is designed to be small (M � N ), it will form an at-
tention bottleneck during the cross-attention operation with
high-dimensional data array. Note that Latent Array can be
viewed as a trainable module, whose values are initialized
randomly at the beginning of training, and are updated by
gradient descent during training. The input Latent Array
comes from the output of last iteration. For the first itera-
tion the Latent Array is initialized with random values.

Linear projection layers are applied before Q,K, V to
project the input onto the same low-d latent space before
attention. The shared weights and bottleneck design allow
our model to handle very large video domain input, while
keeping low computation cost, and is proved to be a perfor-
mance booster on egocentric videos in Section 3.
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Methods Top-1 Accuracy (%) Top-5 Accuracy (%) Unseen Top-1 (%) Tail Classes Top-1 (%)
Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

TSN 59.03 46.78 33.57 87.55 72.10 53.89 53.11 42.02 27.37 26.23 14.73 11.43
TRN 63.28 46.16 35.28 88.33 72.32 55.26 57.54 41.36 29.68 28.17 13.98 12.18
TBN 63.02 47.12 35.55 89.00 73.01 56.19 57.42 41.39 29.25 30.46 18.67 13.97
TSM 65.32 47.80 37.39 89.16 73.95 57.89 59.68 42.51 30.61 30.03 16.96 13.45

SlowFast 63.79 48.55 36.81 88.84 74.49 56.39 57.66 42.55 29.27 29.65 17.11 13.45
Ours 63.82 51.12 38.73 88.42 75.02 57.02 57.71 45.62 31.48 36.05 26.26 19.25

Table 1: Action recognition results on EPIC-100 TEST sets

2.3. Prediction

An average pooling operation will be applied to the out-
puts of two branches, generating a 1D vector, and the vector
will go through two fully-connected (FC) layers at the end.
These two FC layers correspond to nouns and verbs activa-
tion and can be viewed as logits. In order to fully explore
the information from all paths, we sum the logits from Main
Branch and Augment Branch for each category, i.e. noun
and verb. After the summation, a softmax layer is applied
to output the final prediction scores for each class.

2.4. Loss

We use a variant of cross entropy loss as our training
loss,

L = CrossEntropy(ỹ, ŷ)

where ỹ is our predicted label. However, during experi-
ments we find that since Epic Kitchens has a smaller scale
compared with those large-scale video dataset (e.g. Kinet-
ics), it is beneficial to introduce label smoothing proposed
in [17]. The ground truth label used during training, ŷ, be-
comes a mixture of one-hot ground-truth label, y, and a uni-
form distribution µ to regularize our model to make less
confident predictions during training stage,

ŷ = (1− λ)y + λµ

The mixture is controled by a hyperparameter λ ∈ [0, 1].

2.5. Implementation Details

We train our model for 50 epochs using SGD optimizer,
with batch size 8, initial learning rate 10−3, dropout rate
0.5 and momentum 0.9. The learning rate is set in a co-
sine annealing schedule [12]. The mixture scalar λ is set to
0.2. Every frame is randomly cropped to 224× 224 before
feeding into our pipeline. Random crop, flip and random
augment [3] are used during training.

Main Branch The number of input frames sampled for
Path 1 and Path 2 of Main Branch are 32 and 16 respec-
tively. The instantiations of the network architectures are
same as the ResNet-50 backbone in [7, 8]. The weights of
Main Branch are pre-trained on Kinetics.

Augment Branch Random initialization are applied to
the weights of Latent Array and linear projection layers. We
set N = 256, D = 512, K = 6 bands, 1 head for Cross
Attention, 8 heads for Latent Transformer and the number
of iterations is 3. The inner dimension for Q,K, V is 64.

Methods Top-1 Accuracy (%) Top-5 Accuracy (%)
Verb Noun Verb Noun

TSN 60.18 46.03 89.59 72.90
TRN 65.88 45.43 90.42 71.88
TBN 66.00 47.23 90.46 73.76
TSM 67.86 49.01 90.98 74.97

SlowFast 65.56 50.02 90.00 75.62
Ours 67.90 51.82 91.50 76.70

Table 2: Action recognition results on EPIC-100 VAL sets

3. Experiments
3.1. Ablation Study

Table 3 demonstrates that our three-pathway design with
Augment Branch can make obvious improvement on ego-
centric benchmark such as Epic Kitchens.

Methods Top-1 Accuracy (%) Top-5 Accuracy (%)
Verb Noun Verb Noun

w/o Aug 65.24 50.10 89.46 74.63

w/ Aug 67.90↑2.7 51.82↑1.7 91.50↑2.0 76.70↑2.0

Table 3: Ablation of a model trained without Augment
Branch compared with a model trained with Augment
Branch. Results are reported on EPIC-100 VAL sets.

3.2. Results

Table 1 presents our submitted results on EPIC-100 test
sets (i.e. results on the leaderboard). Table 2 compares our
method with all baselines results provided in [5] on vali-
dation set. It is noticeable that our method outperforms all
those highly-performed methods which are widely used for
general video action recognition tasks, under egocentric vi-
sion setting.
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